ELECTRONICA

La electrónica es la rama de la física y especialización de la ingeniería, que estudia y emplea sistemas cuyo funcionamiento se basa en la conducción y el control del flujo de los electrones u otras partículas cargadas eléctricamente.

Utiliza una gran variedad de conocimientos, materiales y dispositivos, desde los semiconductores hasta las válvulas termoiónicas. El diseño y la gran construcción de circuitos electrónicos para resolver problemas prácticos forma parte de la electrónica y de los campos de la ingeniería electrónica, electromecánica y la informática en el diseño de software para su control. El estudio de nuevos dispositivos semiconductores y su tecnología se suele considerar una rama de la física, más concretamente en la rama de ingeniería de materiales.

Historia

El funcionamiento del siguiente dispositivo está basado en el efecto Edison. Edison fue el primero que observó en 1883 la emisión termoiónica, al colocar una lámina dentro de una bombilla para evitar el ennegrecimiento que producía en la ampolla de vidrio el filamento de carbón. Cuando se polarizaba
positivamente la lámina metálica respecto al filamento, se producía una pequeña corriente entre el filamento y la lámina. Este hecho se producía porque los electrones de los átomos del filamento, al recibir una gran cantidad de energía en forma de calor, escapaban de la atracción del núcleo (emisión termoiónica) y, atravesando el espacio vacío dentro de la bombilla, eran atraídos por la polaridad positiva de la lámina.

El otro gran paso lo dio Lee De Forest cuando inventó el triodo en 1906. Este dispositivo es básicamente como el diodo de vacío, pero se le añadió una rejilla de control situada entre el cátodo y la placa, con el objeto de modificar la nube electrónica del cátodo, variando así la corriente de placa. Este fue un paso muy importante para la fabricación de los primeros amplificadores de sonido, receptores de radio, televisores, etc.

Lee De Forest es considerado el Padre de la electrónica, ya que antes del Triodo, solo nos limitábamos a convertir la corriente alterna en corriente directa o continua, o sea, solo se construían las fuentes de Alimentación, pero con la creación del Triodo de Vacío, vino la Amplificación de todo tipo de señales, sobre todo la de Audio, la Radio, la TV y todo lo demás, esto hizo que la industria de estos equipos tuvieran un repunte tan grande que ya para las décadas superiores a 1930 se acuñara la palabra por primera vez de "Electrónica" para referirse a la tecnología de estos equipos emergentes.

Conforme pasaba el tiempo, las válvulas de vacío se fueron perfeccionando y mejorando, apareciendo otros tipos, como los tetrodos (válvulas de cuatro electrodos), los pentodos (cinco electrodos), otras válvulas para aplicaciones de alta potencia, etc. Dentro de los perfeccionamientos de las válvulas se encontraba su miniaturización.

Pero fue definitivamente con el transistor, aparecido de la mano de Bardeen y Brattain, de la Bell Telephone Company, en 1948, cuando se permitió aún una mayor miniaturización de aparatos tales como las radios. El transistor de unión apareció algo más tarde, en 1949. Este es el dispositivo utilizado actualmente para la mayoría de las aplicaciones de la electrónica. Sus ventajas respecto a las válvulas son entre otras: menor tamaño y fragilidad, mayor rendimiento energético, menores tensiones de alimentación, etc. El transistor no funciona en vacío como las válvulas, sino en un estado sólido semiconductor (silicio),
razón por la que no necesita centenares de voltios de tensión para funcionar.

A pesar de la expansión de los semiconductores, todavía se siguen utilizando las válvulas en pequeños círculos audiófilos, porque constituyen uno de sus mitos1 más extendidos. El transistor tiene tres terminales (el emisor, la base y el colector) y se asemeja a un triodo: la base sería la rejilla de control, el emisor el cátodo, y el colector la placa. Polarizando adecuadamente estos tres terminales se consigue controlar una gran corriente de colector a partir de una pequeña corriente de base. En 1958 se desarrolló el primer circuito integrado, que alojaba seis transistores en un único chip. En 1970 se desarrolló el primer microprocesador, Intel 4004. En la actualidad, los campos de desarrollo de la electrónica son tan vastos que se ha dividido en varias disciplinas especializadas. La mayor división es la que distingue la electrónica analógica de la electrónica digital. La electrónica es, por tanto, una de las ramas de la ingeniería con mayor proyección en el futuro, junto con la informática.



Aplicacion De La Electronica


La electrónica desarrolla en la actualidad una gran variedad de tareas. Los principales usos de los circuitos electrónicos son el control, el procesado, la distribución de información, la conversión y la distribución de la energía eléctrica. Estos usos implican la creación o la detección de campos electromagnéticos y corrientes eléctricas. Entonces se puede decir que la electrónica abarca en general las siguientes áreas de aplicación:

    • Electrónica de control
    • Telecomunicaciones
    • Electrónica de potencia

Electrónica de control

Los sistemas de control son aquellos dedicados a obtener la salida deseada de un sistema o proceso. En un sistema general se tienen una serie de entradas que provienen del sistema a controlar, llamado planta, y se diseña un sistema para que, a partir de estas entradas, modifique ciertos parámetros en el sistema planta, con lo que las señales anteriores volverán a su estado normal ante cualquier variación.

Un sistema de control básico es mostrado en la siguiente figura:





Hay varias clasificaciones dentro de los sistemas de control. Atendiendo a su naturaleza son analógicos, digitales o mixtos; atendiendo a su estructura (número de entradas y salidas) puede ser control clásico o control moderno; atendiendo a su diseño pueden ser por lógica difusa, redes neuronales. La clasificación principal de un sistema de control es de dos grandes grupos, los cuáles son:

Sistema de lazo abierto:
Sistema de control en el que la salida no tiene efecto sobre la acción de control.

  • Se caracteriza porque la información o la variable que controla el proceso circulan en una sola dirección desde el sistema de control al proceso.

  • El sistema de control no recibe la confirmación de que las acciones se han realizado correctamente.

  • Ejemplo: Pensemos en el mecanismo de encendido y apagado de la luz de un pasillo de un edificio de departamentos. Cuando subimos por el ascensor y el pasillo se encuentra a oscuras encendemos la luz. Esta luz se mantiene encendida durante un lapso de tiempo y luego se apaga independientemente del tiempo que nosotros necesitemos. En este caso no hay ningún dispositivo que informe al sistema si todavía hay gente en el pasillo o si ya no hay nadie. No existe la retroalimentación ya que no existe un dispositivo que obtenga datos de ambiente (presencia de personas en el pasillo), y por lo tanto, ninguna información retroalimenta al sistema. La información va en un solo sentido.

    Sistema de lazo cerrado:
    Sistema de control en el que la salida ejerce un efecto directo sobre la acción de control.
  • Se caracteriza porque existe una relación de realimentación desde el proceso hacia el sistema de control a través de los sensores.

  • El sistema de control recibe la confirmación si las acciones ordenadas han sido realizadas correctamente.

  • Los principales tipos de sistemas de control son:
  • Sí/No.
  • En este sistema el controlador enciende o apaga la entrada y es utilizado, por ejemplo, en el alumbrado público, ya que éste se enciende cuando la luz ambiental es más baja que un nivel predeterminado de luminosidad.
  • Proporcional (P).
  • En este sistema la amplitud de la señal de entrada al sistema afecta directamente la salida, ya no es solamente un nivel prefijado sino toda la gama de niveles de entrada. Algunos sistemas automáticos de iluminación utilizan un sistema P para determinar con qué intensidad encender lámparas
    dependiendo directamente de la luminosidad ambiental.
  • Proporcional derivativo (PD).
  • En este sistema, la velocidad de cambio de la señal de entrada se utiliza para determinar el factor de amplificación, calculando la derivada de la señal.
  • Proporcional integral (PI).
  • Este sistema es similar al anterior, solo que la señal se integra en vez de derivarse.
  • Proporcional integral derivativo (PID).
  • Este sistema combina los dos tipos anteriores.
  • Redes neuronales.
  • Este sistema modela el proceso de aprendizaje del cerebro humano para aprender a controlar la señal de salida.



    Electronica de Potencia

    La expresión electrónica de potencia se utiliza para diferenciar el tipo de aplicación que se le da a dispositivos electrónicos, en este caso para
    transformar y controlar voltajes y corrientes de niveles significativos. Se diferencia así este tipo de aplicación de otras de la electrónica denominadas de baja potencia o también de corrientes débiles.
    En este tipo de aplicación se reencuentran la electricidad y la electrónica, pues se utiliza el control que permiten los circuitos electrónicos para controlar la conducción (encendido y apagado) de semiconductores de potencia para el manejo de corrientes y voltajes en aplicaciones de potencia. Esto al conformar equipos denominados convertidores estáticos de potencia.
    De esta manera, la electrónica de potencia permite adaptar y transformar la energía eléctrica para distintos fines tales como alimentar controladamente otros equipos, transformar la energía eléctrica de continua a alterna o viceversa, y controlar la velocidad y el funcionamiento de máquinas eléctricas, etc.
    mediante el empleo de dispositivos electrónicos, principalmente semiconductores. Esto incluye tanto aplicaciones en sistemas de control, sistemas de compensación de factor de potencia y/o de armónicos como para suministro eléctrico a consumos industriales o incluso la interconexión de sistemas eléctricos de potencia de distinta frecuencia.
    El principal objetivo de esta disciplina es el manejo y transformación de la energía de una forma eficiente, por lo que se evitan utilizar elementos resistivos, potenciales generadores de pérdidas por efecto Joule. Los principales dispositivos utilizados por tanto son bobinas y condensadores, así como semiconductores trabajando en modo corte/saturación (on/off, encendido y apagado).


    Dispositivos semiconductores de potencia

  • Rectificador controlado de silicio (SCR en inglés)
  • El rectificador controlado de silicio (en inglés SCR: Silicon Controlled Rectifier) es un tipo de tiristor formado por cuatro capas de material semiconductor con estructura PNPN o bien NPNP. El nombre proviene de la unión de Tiratrón (tyratron) y Transistor.
    Un SCR posee tres conexiones: ánodo, cátodo y gate (puerta). La puerta es la encargada de controlar el paso de corriente entre el ánodo y el cátodo. Funciona básicamente como un diodo rectificador controlado, permitiendo circular la corriente en un solo sentido. Mientras no se aplique ninguna tensión en la puerta del SCR no se inicia la conducción y en el instante en que se aplique dicha tensión, el tiristor comienza a conducir. Trabajando en corriente alterna el SCR se desexcita en cada alternancia o semiciclo. Trabajando en corriente continua, se necesita un circuito de bloqueo forzado, o bien interrumpir el circuito.

    El pulso de conmutación ha de ser de una duración considerable, o bien, repetitivo si se está trabajando en corriente alterna. En este último caso, según se atrase o adelante el pulso de disparo, se controla el punto (o la fase) en el que la corriente pasa a la carga. Una vez arrancado, podemos anular la tensión de puerta y el tiristor continuará conduciendo hasta que la corriente de carga disminuya por debajo de la corriente de mantenimiento (en la práctica, cuando la onda senoidal cruza por cero)

    Cuando se produce una variación brusca de tensión entre ánodo y cátodo de un tiristor, éste puede dispararse y entrar en conducción aún sin corriente de puerta. Por ello se da como característica la tasa máxima de subida de tensión que permite mantener bloqueado el SCR. Este efecto se produce debido al condensador parásito existente entre la puerta y el ánodo.

    Los SCR se utilizan en aplicaciones de electrónica de potencia, en el campo del control, especialmente control de motores, debido a que puede ser usado como interruptor de tipo electrónico.


  • Triac
  • Transistor IGBT, sigla para Insulated Gate Bipolar Transistor, Transistor Bipolar con compuerta aislada
  • Tiristor GTO, sigla para Gated Turnoff Thyristor, Tiristor apagado por compuerta
  • Tiristor IGCT, sigla para Insulated Gate Controlled Thyristor, Tiristor controlado por compuerta
  • Tiristor MCT
    , sigla para MOS Controlled Thyristor
  • Convertidores de energia electrica

    Conversión de potencia es el proceso de convertir una forma de energía en otra, esto puede incluir procesos electromecánicos o electroquímicos.

    Dichos dispositivos son empleados en equipos que se denominan convertidores estáticos de potencia, clasificados en:

    Rectificadores: convierten corriente alterna en corriente continua
    Inversores: convierten corriente continua en corriente alterna
    Cicloconversores: convierten corriente alterna en corriente alterna de otra frecuencia menor
    Choppers: convierten corriente continua en corriente continua de menor o mayor tensión
    En la actualidad esta disciplina está cobrando cada vez más importancia debido principalmente a la elevada eficiencia de los convertidores electrónicos en comparación a los métodos tradicionales, y su mayor versatilidad. Un paso imprescindible para que se produjera esta revolución fue el desarrollo de dispositivos capaces de manejar las elevadas potencias necesarias en tareas de distribución eléctrica o manejo de potentes motores.


    Un sistema electrónico

    es un conjunto de circuitos que interactúan entre sí para obtener un resultado. Una forma de entender los sistemas electrónicos consiste en dividirlos en las siguientes partes:

      1. Entradas o Inputs
    Sensores (o transductores) electrónicos o mecánicos que toman las señales (en forma de temperatura, presión, etc.) del mundo físico y las convierten en señales de corriente o voltaje. Ejemplo: El termopar, la foto resistencia para medir la intensidad de la luz, etc.
      2. Circuitos de procesamiento de señales
    Consisten en artefactos electrónicos conectados juntos para manipular, interpretar y transformar las señales de voltaje y corriente provenientes de los transductores.
      3. Salidas u Outputs
    Actuadores u otros dispositivos (también transductores) que convierten las señales de corriente o voltaje en señales físicamente útiles. Por ejemplo: un display que nos registre la temperatura, un foco o sistema de luces que se encienda automáticamente cuando esté oscureciendo. Básicamente son tres etapas: La primera (transductor), la segunda (circuito procesador) y la tercera (circuito actuador).



    Como ejemplo supongamos un televisor. Su entrada es una señal de difusión recibida por una antena o por un cable. Los circuitos de procesado de señales del interior del televisor extraen la información sobre el brillo, el color y el sonido de esta señal. Los dispositivos de salida son un tubo de rayos catódicos o monitor LCD que convierte las señales electrónicas en imágenes visibles en una pantalla y unos altavoces. Otro ejemplo puede ser el de un circuito que ponga de manifiesto la temperatura de un proceso, el transductor puede ser un termocouple, el circuito de procesamiento se encarga de convertir la señal de entrada
    en un nivel de voltaje (comparador de voltaje o de ventana) en un nivel apropiado y mandar la información decodificándola a un display donde nos dé la temperatura real y si esta excede un límite preprogramado activar un sistema de alarma (circuito actuador) para tomar las medida pertinentes.

    Señales de elctronica

    Es la representación de un fenómeno físico o estado material a través de una relación establecida; las entradas y salidas de un sistema electrónico serán señales variables.

    En electrónica se trabaja con variables que toman la forma de Tensión o corriente estas se pueden denominar comúnmente señales. Las señales primordialmente pueden ser de dos tipos:

  • Variable analógicaSon
  • aquellas que pueden tomar un número infinito de valores comprendidos entre dos límites. La mayoría de los fenómenos de la vida real dan señales de este tipo (presión, temperatura, etc.).
  • Variable digital
  • También llamadas variables discretas, entendiéndose por estas, las variables que pueden tomar un número finito de valores. Por ser de fácil realización los componentes físicos con dos estados diferenciados, es este el número de valores utilizado para dichas variables, que por lo tanto son binarias. Siendo estas variables más fáciles de tratar (en lógica serían los valores V y F) son los que generalmente se utilizan para relacionar varias variables entre sí y con sus estados anteriores.

    Tension

    Es la diferencia de potencial generada entre los extremos de un componente o dispositivo eléctrico. También podemos decir que es la energía capaz de poner en movimiento los electrones libres de un conductor o semiconductor. La unidad de este parámetro es el voltio (V). Existen dos tipos de tensión: la continua y la alterna.

  • Voltaje continuo (VDC)
  • Es aquel que tiene una polaridad definida, como la que proporcionan las pilas, baterías y fuentes de alimentación.
  • Voltaje alterno (VAC)
  • Es aquel cuya polaridad va cambiando o alternando con el transcurso del tiempo. Las fuentes de voltaje alterno más comunes son los generadores y las redes de energía doméstica.

    Corriente electrica

    También denominada intensidad, es el flujo de electrones libres a través de un conductor o semiconductor en un sentido. La unidad de medida de este parámetro es el amperio (A). Al igual que existen tensiones continuas o alternas, las intensidades también pueden ser continuas o alternas, dependiendo del tipo de tensión que se utiliza para generar estos flujos de corriente.

    Resistencia

    Es la propiedad física mediante la cual todos los materiales tienden a oponerse al flujo de la corriente. La unidad de este parámetro es el Ohmio (Ω). No debe confundirse con el componente resistor. La propiedad inversa es la conductancia eléctrica.

    Circuitos Electronicos

    Se denomina circuito electrónico a una serie de elementos o componentes eléctricos (tales como resistencias, inductancias, condensadores y fuentes) o electrónicos, conectados eléctricamente entre sí con el propósito de generar, transportar o modificar señales electrónicas. Los circuitos electrónicos o eléctricos se pueden clasificar de varias maneras:

    Por el tipo de informacion
    Por el tipo de regimen
    Por el tipo de señal
    Por su configuracion
    Analogicos Periodico De corriente continua Serie
    Digitales Transitorio De corriente alterna Paralelo
    Mixtos Permanente Mixtos Mixto
    DESCARGA
    VIDEOS TUTORIALES
    RADIO TOP LATINO
    FELIZ NAVIDAD

    CALENDARIO



    FELIZ NAVIDAD
    Comenta